Gabarito da Prova Escrita da Área 04 - Matemática do Edital nº 45/2019

Prof. Dr. Isaac Dayan Bastos da Silva Prof. Dr. Clebes do Nascimento Brandão Prof. Dr. Cleber Pereira

Outubro de 2021

Questão 1. Uma solução: Suponhamos sem perda de generalidade que $\frac{\partial f}{\partial y}(x_0, y_0) > 0$.

Pela continuidade de $\frac{\partial f}{\partial y}$ e pelo fato de $U \subset \mathbb{R}$ ser aberto, $\exists r > 0$ e uma bola $B((x_0, y_0), r) \subset U$ com $\frac{\partial f}{\partial y}(x, y) > 0$, $\forall (x, y) \in B((x_0, y_0), r)$, pelo teorema da conservação do sinal.

Seja $x_0 \times [c, d] \subset B((x_0, y_0), r)$ com $y_0 \in (c, d)$.

Considere a função auxiliar $g(y) = f(x_0, y)$ crescente, pois g'(y) > 0. Logo $g(c) < g(y_0) < g(d)$.

Considere também as funções auxiliares h(x) = f(x,c) e j(x) = f(x,d), contínuas por definição e temos $h(x_0) < k < j(x_0)$, pela igualdade de ambas à função g.

Assim, existe (a, b) tal que $x_0 \in (a, b)$ e $h(x) < k < j(x), \forall x \in (a, b)$.

Tome $V = (a, b) \times (c, d) \subset U$

Para cada $x \in (a, b)$, defina

$$W_x[c,d] \to \mathbb{R}$$

 $y \to f(x,y)$

Observe que W_x é crescente, contínua e que $W_x(c) < k < W_x(d)$ para cada x.

Pelo teorema do valor intermediário, $\exists ! y(x) \in (c,d) \text{ com } W_x(y(x)) = f(x,y(x)) = k.$

Para provar a continuidade de y, fixe $x_1 \in (a,b)$ e dado $\epsilon > 0$ com $(y(x_1) - \epsilon, y(x_1) + \epsilon) \subset (c,d)$.

Como
$$\frac{\partial f}{\partial y}(x,y) > 0$$
, temos $f(x_1, y(x_1 - \epsilon)) < f(x_1, y(x_1)) < f(x_1, y(x_1 + \epsilon))$

Defina $p_{-\epsilon} = f(x, y(x_1) - \epsilon)$ e $p_{\epsilon} = f(x, y(x_1) + \epsilon)$

Pela continuidade de f e pelo teorema da conservação do sinal, $\exists \ \delta > 0$ se $x \in (x_1 - \delta, x_1 + \delta)$ tal que $p_{-\epsilon}(x) < k < p_{\epsilon}(x)$

Para cada $x \in (x_1 - \delta, x_1 + \delta)$ defina:

$$W_x[y(x_1) - \epsilon, y(x_1) + \epsilon] \to \mathbb{R}$$

 $y \to f(x, y)$

Logo
$$W_x(y(x_1) - \epsilon) < k < W_x(y(x_1) + \epsilon)$$

Pelo teorema do valor intermediário, $\exists ! y \in (y(x_1) - \epsilon), y(x_1) + \epsilon)$) tal que $W_x(y) = k$ ou seja $|y(x) - y(x_1)| < \epsilon$, como $x_1 \in (a, b)$ é arbitrário temos y contínua em (a, b).

Questão 2. i) Sejam A e B matrizes semelhantes. Por definição de semelhança de matrizes existe uma matriz inversível P tal que $B = P^{-1}AP$. Aplicando determinante na equação anterior, temos

$$\det(B) = \det(P^{-1}AP) = \det(P^{-1})\det(A)\det(P) = \det(A)\det(P^{-1}P) = \det(A)\det(I) = \det(A).$$

Usando o fato que o traço é uma aplicação linear e a propriedade tr(AB) = tr(BA), vem que

$$tr(BA) = tr(P^{-1}AP) = tr(AP^{-1}P) = tr(AI) = tr(A).$$

ii) Sejam $A = [a_{ij}]$ e $B = [b_{ij}]$ matrizes quadradas de ordem n. Sejam A_j, B_j e D_j as j-ésimas colunas de A, B e BA, respectivamente. Note que a j-ésima coluna de uma matriz é obtida ao se calcular o seu valor em e_j (e_j matriz coluna nx1, com 1 na j-ésima entrada e 0 nas demais entradas). Assim,

$$(BA)e_j = B(Ae_j) = BA_j.$$

Por definição, $D_j = a_{1j}B_1 + ... + a_{nj}B_n$. Assim, se D denotar a função determinante,

$$\det(BA) = D(a_{11}B_1 + \dots + a_{n1}B_n, \dots, a_{1n}B_1 + \dots + a_{nn}B_n).$$

Expandindo essa última expressão, obtemos

$$\det(BA) = \sum_{p} a_{p_1 1} \cdots a_{p_n n} D(B_{p_1}, \dots, B_{p_n})$$

$$= \sum_{p} \epsilon(p) a_{p_1 1} \cdots a_{p_n n} D(B_1, \dots, B_n)$$

$$= \det(B) \sum_{p} \epsilon(p) a_{p_1 1} \cdots a_{p_n n}$$

$$= \det(B) \det(A).$$

Onde $\epsilon(p)$ é o sinal da permutação p.

Questão 3. .

(a) Um função inteira é uma função complexa $f: \mathbb{C} \longrightarrow \mathbb{C}$ que é analítica em todos os pontos de \mathbb{C} . Isto significa que para cada ponto $z_0 \in \mathbb{C}$, existe r > 0 tal que f é diferenciável em todo ponto do disco aberto $\Delta(z_0, r) \subset \mathbb{C}$.

Para mostrar que a função $f(z) = e^z$ é uma função inteira utilizaremos as equações de Cauchy-Riemann, como segue: escrevendo z = x + iy, $u(x,y) = e^x cos(y)$ e $v(x,y) = e^x sen(y)$, obtemos $f(z) = u(x,y) + iv(x,y) = e^x (cos(y) + isen(y))$. De modo que

$$\frac{\partial u}{\partial x}(z) = \frac{\partial v}{\partial y}(z) = e^x \cos(y) \in \frac{\partial u}{\partial y}(z) = -\frac{\partial v}{\partial x}(z) = e^x \sin(y).$$

Como f está definida em todo \mathbb{C} , as derivadas parciais de suas funções componentes u e v existem e são contínuas em todo ponto de \mathbb{C} e satisfazem as equações de Cauchy-Riemann, concluímos que f é uma função diferenciável em todos os pontos de \mathbb{C} . Isto é, f é uma função analítica.

(b) Um função conforme é uma função complexa analítica $f:A\longrightarrow \mathbb{C}$ definida em um conjunto aberto $A\subset \mathbb{C}$ com a propriedade de que sua derivada f' nunca se anula. Isto é, $f'(z)\neq 0, \ \forall z\in A.$

Para encontrar os pontos onde a função f(z) = cos(z) não é conforme, devemos inicialmente encontrar a derivada de f.

Observando que a função complexa cos(z) é definida por $cos(z)=\frac{e^{iz}+e^{-iz}}{2},\ z\in\mathbb{C},$ obtemos

$$f'(z) = \left(\frac{e^{iz} + e^{-iz}}{2}\right)' = \frac{ie^{iz} - ie^{-iz}}{2} = \frac{-e^{iz} + e^{-iz}}{2i} = -\frac{e^{iz} - e^{-iz}}{2i} = -sen(z).$$

Agora, como os zeros da função complexa sen(z) coincidem com os zeros da função seno real, obtemos que sen(z)=0 se, e somente se, $z=k\pi$ com $k\in\mathbb{Z}$. Portanto, a função f(z)=cos(z) não é conforme nos pontos $z=k\pi$ com $k\in\mathbb{Z}$.

Questão 4. Uma solução: a) Como $f': I \to \mathbb{R}$ contínua e $f'(x_0) \neq 0$ logo existe vizinhança $V \subset I$ de x_0 tal que $f'(x) \neq 0$, $\forall x \in V$. Sem perda de generalidade, assumimos que $f'(x_0) > 0$ então f'(x) > 0, $\forall x \in V$ e, assim, f é estritamente crescente em V.

Como f é contínua, pelo teorema do valor intermediário, f(V) = J é um intervalo aberto.

- b) Por ser estritamente crescente, f é injetiva e, portanto, bijetiva na própria imagem.
- c) Calculando $\lim_{k\to 0} \frac{f^{-1}(y+k) f^{-1}(y)}{k} \ \forall y \in J.$

Dado $y \in J$, $\exists x \in V$ tal que y = f(x) e y + k = f(x + h) com $\lim_{h \to 0} k = 0$ pela continuidade da f.

Logo,

$$(f^{-1})' = \lim_{k \to 0} \frac{f^{-1}(y+k) - f^{-1}(y)}{k} = \lim_{k \to 0} \frac{x+h-x}{f(x+h) - f(x)} = \lim_{k \to 0} \frac{h}{f(x+h) - f(x)} = \lim_{k \to 0} \frac{1}{\frac{f(x+h) - f(x)}{h}} = \frac{1}{\lim_{k \to 0} \frac{f(x+h) - f(x)}{h}} = \frac{1}{f'(x)}$$

Logo f é um difeomorfismo.

Questão 5. Usaremos indução no número n de elementos do conjunto $\{v_1, ..., v_n\}$. Se n = 1, o resultado é claro. Suponhamos que o resultado é verdadeiro para n - 1 vetores e consideremos o caso de n vetores. Se

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0. \tag{1}$$

Aplicando T na equação (1), temos

$$\alpha_1 T(v_1) + \alpha_2 T(v_2) + \dots + \alpha_n T(v_n) = 0.$$

Usando que $T(v_i) = u_i$, para i = 1, ..., n, obtemos

$$\alpha_1 \lambda_1 v_1 + \alpha_2 \lambda_2 v_2 + \dots + \alpha_n \lambda_n v_n = 0. \tag{2}$$

Por outro lado, multiplicando (1) por λ_n , vem

$$\alpha_1 \lambda_n v_1 + \alpha_2 \lambda_n v_2 + \dots + \alpha_n \lambda_n v_n = 0. \tag{3}$$

Subtraindo as equações (2) e (3), concluímos que

$$\alpha_1(\lambda_1 - \lambda_n)v_1 + \alpha_2(\lambda_2 - \lambda_n)v_2 + \dots + \alpha_{n-1}(\lambda_{n-1} - \lambda_n)v_{n-1} = 0.$$

Como $\lambda_i - \lambda_n \neq 0$ para todo i = 1, ..., n - 1, a hipótese de indução garante que $\alpha_i = 0$ para i = 1, ..., n - 1. Levando em (1), concluímos que $\alpha_n = 0$ e que o conjunto $\{v_1, ..., v_n\}$ é linearmente independente.

Questão 6. Definição. Uma função harmônica definida em uma região $D \subset \mathbb{C}$ é uma função contínua $U:D \longrightarrow \mathbb{R}$ com a seguinte propriedade: Suas derivadas parciais de segunda ordem

existem e são contínuas em D e satisfazem, para todo $(x,y) \in D$, a conhecida equação de Laplace:

$$\frac{\partial^2 U}{\partial x^2}(x,y) + \frac{\partial^2 U}{\partial y^2}(x,y) = 0.$$

Agora, **para provar** o que se pede na segunda parte da questão, assuma que D é uma região simplesmente conexa em \mathbb{C} e que $U:D\longrightarrow\mathbb{R}$ é uma função harmônica em D. Defina a função complexa $g(z)=\frac{\partial u}{\partial x}(z)-i\frac{\partial u}{\partial y}(z)$ para $z\in D$. Como u é uma função harmônica em D, u satisfaz a equação de Laplace. Então,

$$\frac{\partial (Reg)}{\partial x} - \frac{\partial (Img)}{\partial y} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Ademais, como as derivadas parciais mistas de u são contínuas, obtemos

$$\frac{\partial (Reg)}{\partial y} + \frac{\partial (Img)}{\partial x} = \frac{\partial^2 u}{\partial y \partial x} + \left(- \frac{\partial^2 u}{\partial x \partial y} \right) = 0.$$

Portanto, a função g satisfaz as equações de Cauchy-Riemann. Ainda, como

$$\frac{\partial (Reg)}{\partial x}$$
 , $\frac{\partial (Reg)}{\partial y}$, $\frac{\partial (Img)}{\partial x}$ e $\frac{\partial (Img)}{\partial y}$

são todas contínuas em D, segue que g é uma função analítica em D. Em adição, como D é uma região simplesmente conexa, em \mathbb{C} , existe uma função analítica $f:D\longrightarrow \mathbb{C}$ satisfazendo, por um lado, f'(z)=g(z) (isto é: f é uma primitiva de g em D) e, por outro lado (usando as equações de Cauchy-RIemann), $f'(z)=\frac{\partial (Ref)}{\partial x}(z)-i\frac{\partial (Ref)}{\partial y}(z)$, para todo $z\in D$. Logo, existe $c\in \mathbb{R}$ tal que Ref=u(z)+c para todo $z\in D$. Daí, $F:D\longrightarrow \mathbb{C}$ definida por F(z)=f(z)-c é uma função analítica com ReF(z)=u(z) para todo $z\in D$.

Questão 7. Uma solução: O Sólido construído pela rotação indicada no enunciado é o toro e o cálculo do volume dele não será alterado pela translação do círculo **a** unidades no sentido negativo do eixo y. Logo a equação resultante dessa translação é dada por:

$$y^2 + (x - a)^2 = b^2 (1)$$

Pela simetria do círculo, podemos calcular a metade do volume do toro, considerando apenas a função que descreve a parte positiva da circunferência $y = \sqrt{b^2 - (x-a)^2}$ e ao final iremos multiplicar o resultado por 2.

A metade do volume será calculada utilizando a fórmula:

$$V_1 = 2\pi \cdot \int_{(a-b)}^{(a+b)} x \cdot \sqrt{b^2 - (x-a)^2} dx$$
 (2)

Utilizando a substituição de variável u = x - a, temos du = dx e, assim,

$$V_1 = 2\pi \cdot \int_{-b}^{b} (u+a) \cdot \sqrt{b^2 - u^2} du = 2\pi \left[\int_{-b}^{b} u \cdot \sqrt{b^2 - u^2} du + \int_{-b}^{b} a \cdot \sqrt{b^2 - u^2} du \right]$$
(3)

Pelo fato da função $u.\sqrt{b^2-u^2}$ ser ímpar temos $\int_{-b}^b u.\sqrt{b^2-u^2}du=0$ e como $a.\sqrt{b^2-u^2}$ é uma função par, então $\int_{-b}^b a.\sqrt{b^2-u^2}du=2$. $\int_0^b a.\sqrt{b^2-u^2}du$. Logo,

$$V_1 = 2\pi . a.2 \int_0^b \sqrt{b^2 - u^2} du \tag{4}$$

Fazendo a substituição trigonométrica $u = b.sen \ \theta \ com \ 0 \le \theta \le \pi/2$, temos $du = b.cos \ \theta.d\theta$, obtemos:

$$V_1 = 4\pi . a \int_0^{\pi/2} b^2 . \cos^2\theta d\theta = 4\pi . a . b^2 \int_0^{\pi/2} \frac{1}{2} + \frac{\cos 2\theta}{2} d\theta = 4\pi . a . b^2 . \frac{\pi}{4} = \pi^2 a b^2$$
 (5)

Portanto o volume V do Toro é o dobro de V_1 e assim:

$$V = 2.\pi^2 \cdot a \cdot b^2 \tag{6}$$

Questão 8. Primeiramente provaremos a existência da transformação linear T. Dado um vetor $v \in V$, existem únicos $\alpha_i \in K$, com i = 1, ..., n tais que

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n.$$

Para esse vetor v, definimos

$$T(v) = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n$$
.

Da definição, é claro que $T(v_i) = u_i$ para todo i = 1, ..., n. Seja agora λ um escalar e

$$u = \beta_1 v_1 + \beta_2 v_2 + ... + \beta_n v_n$$

com $\beta_1, \beta_2, ..., \beta_n \in K$, então temos $T(\lambda v + u) = (\lambda \alpha_1 + \beta_1)u_1 + (\lambda \alpha_2 + \beta_2)u_2 + ... + (\lambda \alpha_n + \beta_n)u_n$ = $\lambda(\alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n) + (\beta_1 u_1 + \beta_2 u_2 + ... + \beta_n u_n)$ = $\lambda T(v) + T(u)$, o que mostra que T é linear.

Para provar a unicidade de T, suponhamos $T_1: V \longrightarrow U$ uma transformação linear tal que $T_1(v_i) = u_i$, para todo i = 1, 2, ..., 3. Então, para todo vetor $v = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$, temos $T_1(v) = \alpha_1 T_1(v_1) + \alpha_2 T_1(v_2) + ... + \alpha_n T_1(v_n)$

$$= \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n$$

= $T(V)$.

Logo, $T_1 = T(v)$, para todo $v \in V$ e, portanto, $T_1 = T$, provando a unicidade.

Questão 9. Uma demonstração. Veja que, se $\lim \sqrt[n]{|y_n|} > 1$, existe $n_0 \in \mathbb{N}$, tal que para todo $n \ge n_0$, obtemos $\lim \sqrt[n]{|y_n|} \ge 1$. Portanto, $|y_n| \ge 1$, $\forall n \ge n_0$, donde segue que $\lim y_n \ne 0$, consequentemente, a série real $\sum_{n=0}^{\infty} y_n$ é divergente. Como a série de números complexos $\sum_{n=0}^{\infty} z_n$ é convergente se e somente se as séries de números reais $\sum_{n=0}^{\infty} x_n$ e $\sum_{n=0}^{\infty} y_n$ são convergentes, concluímos que $\sum_{n=0}^{\infty} z_n$ é uma série divergente.

Questão 10. Uma solução:

Sejam $s_n = a_0 + \ldots + a_n$ e $S_n = b_0 + \ldots + b_n$ as somas parciais das séries $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} b_n$.

a) Como $a_n < b_n$, $\forall n > n_0$, temos $s_n < S_n \leq \infty$ como $\sum_{n=0}^{\infty} a_n$ diverge então $\lim_{n \to \infty} s_n = \infty$,

assim pelo teorema do confronto temos $\lim_{n\to\infty} S_n = \infty$, ou seja, $\sum_{n=0}^{\infty} b_n$ diverge.

b) Pela hipótese $a_n < b_n$, $\forall n \ge n_0$ temos $0 < \sum_{n=n_0}^{\infty} a_n < \sum_{n=n_0}^{\infty} b_n$.

Observe, ainda, que,
$$\sum_{n=n_0}^{\infty} a_n = \sum_{n=0}^{\infty} a_n - s_{n_0-1}$$
 e $\sum_{n=n_0}^{\infty} b_n = \sum_{n=0}^{\infty} b_n - s_{n_0-1}$

Então se $\sum_{n=0}^{\infty} b_n$ converge então $\sum_{n=n_0}^{\infty} b_n$ converge para um valor, digamos L. Logo, como

 $0 < \sum_{n=n_0}^{\infty} a_n < L$ observamos que a sequência s_n é monótona e limitada e, portanto, convergente,

logo $\sum_{n=0}^{\infty} a_n$ é convegente.

c) Pode ser demonstado por indução que $n!>2^n,\,\forall n\geq 4.\,$ Assim, $\frac{1}{n!}<\frac{1}{2^n},\,\forall n\geq 4,\,$ logo

 $\sum_{n=4}^{\infty} \frac{1}{n!} < \sum_{n=4}^{\infty} \frac{1}{2^n} \text{ e como } \sum_{n=4}^{\infty} \frac{1}{2^n} \text{ é a série geométrica de razão } \frac{1}{2} \text{ que é convergente, logo pelo}$

teorema de comparação para séries, concluímos que $\sum_{n=4}^{\infty} \frac{1}{2^n}$ converge.

Questão 11. i) Seja S o conjunto $\{xyx^{-1}y^{-1}/x, y \in G\}$. Primeiro, se $\alpha \in S$, então $\alpha^{-1} \in S$; consequentemente, se ξ é um elemento qualquer de $G' = \langle S \rangle$, então ξ se escreve da forma $\xi = \alpha_1 \alpha_2 \cdots \alpha_n$ com $\alpha_1, \alpha_2, \cdots, \alpha_n \in S$. Segundo, se $g \in G$, temos

$$g\xi g^{-1} = g(\alpha_1\alpha_2\cdots\alpha_n)g^{-1} = (g\alpha_1g^{-1})(g\alpha_2g^{-1})\cdots(g\alpha_ng^{-1})$$

e consequentemente, para ver que $g\xi g^{-1} \in G'$, basta ver que $g\alpha g^{-1} \in S$ quando $\alpha \in S$. Seja então $\alpha = xyx^{-1}y^{-1}$ um elemento de S, assim $g\alpha g^{-1} = g(xyx^{-1}y^{-1})g^{-1} = (gxg^{-1})(gyg^{-1})(gx^{-1}g^{-1})(gyg^{-1})^{-1} \in S$.

ii) Sejam G um grupo abeliano e H um subgrupo de G. Para todo $g \in G$, vale que

$$H^g = \{g^{-1}hg|h \in H\} = \{h|h \in H\} = H$$

o que mostra que H é um subgrupo normal de G.

O candidato deverá apresentar um grupo G, mostrar que todo subgrupo W de G é normal em G e for fim, mostrar que G é não abeliano.

Questão 12. Uma demonstração. Tome uma parametrização $X:U\subset\mathbb{R}^2\longrightarrow S$, tal que $p\in X(U)$. Mostraremos que o subespaço $dX_q(\mathbb{R}^2)$ coincide com T_pS , onde $q\in U$ satisfaz X(q)=p. Para este propósito, se w é um vetor tangente em p, então existe uma curva $\alpha:(-\epsilon,\epsilon)\longrightarrow X(U)$ satisfazendo $\alpha(0)=p$ e $\alpha'(0)=w$. Considere a curva diferenciável $\beta=X^{-1}\circ\alpha:(-\epsilon,\epsilon)\longrightarrow U$, e veja que $dX_q(\beta'(0))=w$. Logo, $w\in dX_q(\mathbb{R}^2)$.

Agora, seja $w = dX_q(v)$, onde $v \in \mathbb{R}^2$. Mostraremos que $w \in T_pS$. De fato, veja que v é o vetor tangente da curva $\gamma: (-\epsilon, \epsilon) \longrightarrow U$, $\gamma(t) = tv + q$. Portanto, usando a definição de diferencial, obtemos que $w = \alpha'(0)$, onde $\alpha = X \circ \gamma(-\epsilon, \epsilon) \longrightarrow X(U)$. Logo, $w \in T_pS$.

Questão 13. Uma solução: Admitamos a hipótese de que as soluções são do tipo $y = x^m$, logo derivando duas vezes obtemos:

$$\frac{dy}{dx} = m.x^{m-1} \tag{7}$$

$$\frac{d^2y}{dx^2} = m.(m-1)x^{m-2} \tag{8}$$

Substituindo na EDO, obtemos:

$$x^{2}.m.(m-1).x^{m-2} + 3x.mx^{m-1} + x^{m} = m.(m-1).x^{m} + 3.mx^{m} + x^{m} = 0$$
(9)

$$x^{m}(m(m-1) + 3m + 1) = 0 (10)$$

Assim devemos resolver a equação

$$(m(m-1) + 3m + 1) = 0 (11)$$

que simplificada é igual a $m^2 + 2m + 1 = 0$ que possui soluções $m_1 = m_2 = -1$

Assim temos $y_1 = x^{-1}$ é uma solução. Utilizando o método de redução de ordem para encontrar uma outra solução linearmente independente, temos:

$$y_2 = x^{-1} \cdot \int \frac{e^{-\int (\frac{3}{x})dx}}{(x^{-1})^2} dx = \frac{1}{x} \cdot \int \frac{e^{-3.\ln(x)}}{x^{-2}} dx = \frac{1}{x} \cdot \int \frac{x^{-3}}{x^{-2}} dx$$
 (12)

$$y_2 = \frac{1}{x} . \ln x \tag{13}$$

Portanto a solução geral da EDO é dada por:

$$y = c_1 \cdot \frac{1}{x} + c_2 \cdot \frac{1}{x} \cdot \ln x \tag{14}$$

Questão 14. A demonstração será feita por indução em m. Suponha que m=1 de modo que $p(x)=ax+a_1$ tem b_1 como raiz. Então, $p(b_1)=ab_1+a_1=0$, ou seja, $a_1=-ab_1$, e

$$p(x) = ax - ab_1 = a(x - b_1).$$

Logo, o resultado vale para m=1.

Suponha agora que o resultado seja válido para m=k e consideremos p(x) de grau k+1 com raízes $b_1, b_2, \ldots, b_{k+1}$. Como b_1 é raiz de p(x), temos, pelo teorema da fatoração, $p(x)=q(x)(x-b_1)$, onde q(x) é de grau k e coeficiente líder a. Como $p(b_j)=q(b_j)(b_j-b_1)=0$, para $j=2,\ldots,k+1$ e como $b_j-b_1\neq 0$ para $j\neq 1$, segue que b_2,b_3,\ldots,b_{k+1} são raízes distintas de q(x). Por hipótese, $q(x)=a(x-b_2)(x-b_3)\cdots(x-b_{k+1})$. Então,

$$p(x) = a(x - b_1)(x - b_2) \cdots (x - b_{k+1})$$

e a demonstração por indução está completa.

Questão 15. Uma Solução. Para garantir a orientabilidade de S basta explicitar um campo de vetores normal diferenciável em S. Para este propósito, encontremos os campos de vetores tangentes X_u e X_v . Temos:

$$X_u = (-vsen(u), vcos(u), 0)$$
$$X_v = (cos(u), sen(u), 2v).$$

Agora, encontremos o campo de vetores $X_u \wedge X_v$,

$$X_u \wedge X_v = \left(2v^2 cos(u), 2v^2 sen(u), -v\right)$$

. Por fim, definamos o campo de vetores $N: S \longrightarrow \mathbb{R}^3$, por:

$$N(p) = \frac{X_u \wedge X_v}{|X_u \wedge X_v|} = \left(\frac{2v\cos(u)}{\sqrt{4v^2 + 1}}, \frac{2v\sin(u)}{\sqrt{4v^2 + 1}}, \frac{-1}{\sqrt{4v^2 + 1}}\right).$$

Observe que N é um campo definido globalmente em S, é diferenciável pois suas funções componentes são diferenciáveis e é normal a S em todo ponto $p \in S$. Isto prova que S é uma superfície regular orientável.

Agora, para classificar os pontos de S, devemos analisá-los de acordo com o sinal da curvatura Gaussiana K de S. Para tanto, lembremo-nos que em coordenadas locais a curvatura K é expressa por

$$K = \frac{eg - f^2}{EG - F^2},$$

onde $E,\,F,\,G$ e $e,\,f$ e g são os coeficientes da primeira e da segunda forma fundamental de S, respectivamente. Ainda, estes coeficientes são expressos por:

$$E = \langle X_u, X_u \rangle = v^2; \quad F = \langle X_u, X_v \rangle = 0; \quad G = \langle X_v, X_v \rangle = 1 + 4v^2;$$

е

$$e = \langle N, X_{uu} \rangle = \frac{-2v^2}{\sqrt{1+4v^2}}; \quad f = \langle N, X_{uv} \rangle = 0; \quad g = \langle N, X_{vv} \rangle = \frac{-2}{\sqrt{1+4v^2}}.$$

De onde obtemos

$$K = \frac{4v^2}{4v^2 + 1}.$$

Como K é uma função estritamente positiva em S, segue que todos os pontos de S são pontos elípticos.

Questão 16. Uma solução: Os símbolos de Christoffel são os coeficientes $\Gamma^k_{ij},\ i,j,k=1,2$

determinados a partir das seguintes equações:

$$\Gamma_{11}^{1}E + \Gamma_{11}^{2}F = \frac{1}{2}E_{u};$$

$$\Gamma_{11}^{1}F + \Gamma_{11}^{2}G = F_{u} - \frac{1}{2}E_{v};$$

$$\Gamma_{12}^{1}E + \Gamma_{12}^{2}F = \frac{1}{2}E_{v};$$

$$\Gamma_{12}^{1}F + \Gamma_{12}^{2}G = \frac{1}{2}G_{u};$$

$$\Gamma_{22}^{1}E + \Gamma_{22}^{2}F = F_{v} - \frac{1}{2}G_{u};$$

$$\Gamma_{22}^{1}F + \Gamma_{22}^{2}G = \frac{1}{2}G_{v}.$$

Ademais, vale que os símbolos de Christoffel são simétricos em relação aos índices inferiores. Agora, para a superfície regular S parametrizada por $X(u,v) = (vcos(u), vsen(u), v^2 + 1)$, com $0 < u < 2\pi$ e v > 0, obtemos os coeficientes da primeira forma fundamental $E = v^2$, F = 0 e $G = 1 + 4v^2$; donde obtemos:

$$E_u = 0,$$
 $E_v = 2v,$
 $F_u = F_v = 0,$ $G_v = 8v.$

Substituindo os coeficientes E, F e G e suas respectivas derivadas nas equações que determinam os símbolos de Christoffel, encontramos: $\Gamma^1_{11} = 0$, $\Gamma^2_{11} = \frac{-v}{1+4v^2}$, $\Gamma^1_{12} = \frac{1}{v}$, $\Gamma^2_{12} = 0$, $\Gamma^1_{22} = 0$ e $\Gamma^2_{22} = \frac{4v}{1+4v^2}$. Seja agora $\gamma: (-\epsilon, \epsilon) \to S$ uma geodésica em S e tomemos X(u(t), v(t)) a expressão de γ na parametrização X. Então as seguintes equações diferenciais das geodésicas são satisfeitas para γ :

$$u'' + \Gamma_{11}^{1}(u')^{2} + 2\Gamma_{12}^{1}u'v' + \Gamma_{22}^{1}(v')^{2} = 0,$$

$$v'' + \Gamma_{11}^{2}(u')^{2} + 2\Gamma_{12}^{2}u'v' + \Gamma_{22}^{2}(v')^{2} = 0,$$

Com os símbolos de Christoffel obtidos anteriormente, as equações diferenciais das geodésicas para γ se tornam:

$$u'' + \frac{2}{v}u'v' = 0,$$

$$v'' + \frac{-v}{1 + 4v^2}(u')^2 + \frac{4v}{1 + 4v^2}(v')^2 = 0.$$

Estas são as equações procuradas.

Questão 17. \Rightarrow) : Suponhamos que J é um ideal maximal de A, e seja $\bar{0} \neq \bar{a} \in \bar{A} = A/J$. Vamos provar que existe $\bar{b} \in \bar{A}$ tal que $\bar{a}\bar{b} = \bar{1}$. De fato, se L = A.a ideal principal de A gerado por a, teremos que $J + L = \{x + y | x \in J, y \in L\}$ é um ideal contendo J, e mais $\bar{a} \neq \bar{0} \iff a \notin J$. Como $a = 1.a \in L \subset J + L$ temos que J + L é um ideal que contem J e ainda $J + L \neq J$. Pela maximalidade de J segue que A = J + L e daí vem que $1 \in J + L$ implica que existe $u \in J, v \in L$ tais que 1 = u + v. Mas $v \in L = A.a$ e temos que v = b.a para algum $v \in A$, ou seja, existem $v \in A$, $v \in A$ tais que $v \in A$, $v \in A$ tais que $v \in A$ t

 \iff): Suponhamos que $\bar{A} = A/J$ seja um corpo. Assim, $\bar{0}, \bar{1} \in \bar{A} \implies J \neq A$.

Se $M \neq J$ é um ideal de A e $J \subset M \subset A$, então teremos que existe $a \in M$, com $a \notin J$, ou seja, $\bar{a} \neq \bar{0}, \bar{a} \in \bar{A}$. Como \bar{A} é um corpo, existe $\bar{b} \in \bar{A}$ tal que $\bar{a}.\bar{b} = \bar{1}$, ou ainda, $ab \equiv 1 \pmod{J}$ se, e somente se, existe $u \in J$ tal que ab - 1 = u, e isso nos diz que, 1 = ab - u. Como $a \in M$, segue que $ab \in M$ e como $u \in J \subset M$ temos também $U \in M$. Logo, concluímos que $1 \in M$ e imediatamente temos M = A, como queríamos demonstrar.

Questão 18. Seja o Problema de Valor Inicial dado por:

$$\begin{cases} \frac{dy}{dx} = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

$$\text{Com } f: U \subset \mathbb{R}^2 \to \mathbb{R}$$

Se $f \in \frac{\partial f}{\partial y}$ forem contínuas então existe $V = (a,b) \times (c,d) \subset U$ e uma única função $y:(a,b) \to (c,d)$ de classe C^1 , tal que y'(x) = f(x,y(x)) e $y(x_0) = y_0$.

Pelo item anterior, é necessário verificar em quais regiões do plano $f(x,y)=\sqrt{y}.x^2$ e $\frac{\partial f}{\partial y}=\frac{x^2}{2\sqrt{y}}$ são contínuas.

Logo o teorema é válido para todo $((x,y) \in U \subset \mathbb{R}^2$, tal que y > 0.

Questão 19. Multiplique a equação inteira pelo fator integrante:

$$e^{\int P(x)dx} \tag{15}$$

Assim temos:

$$e^{\int P(x)dx} \frac{dy}{dx} + e^{\int P(x)dx} P(x) y = e^{\int P(x)dx} f(x)$$
(16)

Reduzindo a uma derivada do produto no lado esquerdo da equação, obtemos:

$$\frac{d[e^{\int P(x)dx} \cdot y]}{dx} = e^{\int P(x)dx} f(x) \tag{17}$$

Integrando em relação a x nos dois lados da equação:

$$e^{\int P(x)dx}.y = \int e^{\int P(x)dx} f(x)dx + c \tag{18}$$

Por último, multiplicando por $e^{-\int P(x)dx}$ nos dois lados da equação:

$$y(x) = e^{-\int P(x)dx} \int e^{\int P(x)dx} f(x)dx + c \cdot e^{-\int P(x)dx}$$
(19)

Um circuito LR pode ser modelado pela equação diferencial de primeira ordem abaixo:

$$L.\frac{di}{dt} + R.i = U(t) \tag{20}$$

Com U sendo a tensão aplicada no circuito, i(t) a corrente elétrica no instante t, L é a indutância do indutor, R é a resistência do resistor. Substituindo as informações na EDO, obtemos:

$$\frac{1}{2} \cdot \frac{di}{dt} + 40.i = 24 \tag{21}$$

Multiplicando por 2, temos:

$$\frac{di}{dt} + 80.i = 48\tag{22}$$

Aplicando a solução encontrada acima, chegamos a:

$$i(t) = e^{-80t} \int e^{80t} .48dt + c.e^{-80t}$$
(23)

$$i(t) = \frac{48}{80} + c.e^{-80t} \tag{24}$$

Utilizando a condição i(0) = 0,

$$i(0) = \frac{3}{5} + c.e^0 = 0 (25)$$

$$c = -\frac{3}{5} \tag{26}$$

E a solução do PVI é dada por:

$$i(t) = \frac{3}{5} - \frac{3}{5} \cdot e^{-80t} \tag{27}$$

Questão 20. Uma solução: Observe inicialmente que, por ser α uma geodésica, seu parâmetro t é proporcional ao seu comprimento de arco. Isto é, existe uma constante não nula $c \in \mathbb{R}$, tal que $|\alpha'(t)| = c$. Sendo $\beta = \alpha \circ h$, obtemos $\beta'(t) = \alpha'(h(t)).h'(t)$.

Como uma condição necessária para que β seja uma geodésica é que $|\beta'(t)| = constante$ e $|\alpha'(h(t)).h'(t)| = |\alpha'(h(t))|.|h'(t)|$, devemos ter |h'(t)| = constante. Ou seja, h(t) = at + b, com $a \neq 0$ e b constantes reais. Por outro lado, escrevendo $\beta(t) = \alpha(at + b)$, $a \neq 0$ e usando que α é uma geodésica, podemos calcular a derivada covariante $\frac{D\beta'(t)}{dt} = a^2 \frac{D\alpha'(at+b)}{dt} = 0$, mostrando assim que $\beta = \alpha \circ h(t)$, h(t) = at + b, é uma geodésica.