

CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR – EDITAL Nº 04/2016 – PROGRAD

Prova Escrita com Gabarito

1. **(1 ponto)** A tabela abaixo apresenta dados fictícios de uma amostra de 10 pacientes de um estudo médico conduzido para se pesquisar o relacionamento entre as variáveis idade (X) em anos e o número de batimentos cardíacos por minuto (Y).

Idade	10	20	20	25	30	30	30	40	45	50
Nº de	210	200	195	195	190	180	185	180	170	165
batimentos	210	200	195	195	190	100	103	100	170	103

a. **(0,25 ponto)** Sabendo que a equação de regressão linear simples ajustada é dada por $\hat{Y}=219.8-1.1X_i$ interprete o coeficiente de regressão:

R.: A cada acréscimo de 1 ano de vida para estes pacientes, está ocorrendo uma redução média de 1,1 batimentos cardíacos.

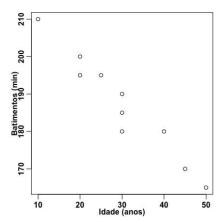
b. **(0,25 ponto)** Faça o diagrama de dispersão entre as variáveis citadas e baseando-se nele, o que pode ser dito sobre a relação existente entre estas variáveis?

R.

>> A relação é linear

>> O coeficiente de correlação é negativo

>> Espera-se que com o aumento da idade média aconteça uma diminuição do número médio de batimentos cardíacos por minuto dos pacientes envolvidos no estudo e vice-versa.



c. **(0,25 ponto)** Com base na equação de regressão linear simples ajustada, dada no item "a", o que pode ser dito acerca do número de batimentos médios de um paciente de 70 anos? Comente acerca da estimativa obtida.

R.: $\hat{Y} = 219.8 - 1.1X_i = 219.8 - 1.1 \times 70 = 142.8$ batimentos médios por minuto. CONTUDO, TRATA-SE DE UMA EXTRAPOLAÇÃO em relação à amplitude amostral, logo não há confiança estatística associada ao cálculo. (Obs.: Não é necessário apresentar o cálculo, sendo suficiente a justificativa, inclusive usando outros termos).

CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR - EDITAL № 04/2016 - PROGRAD

Prova Escrita com Gabarito

d. **(0,25 ponto)** Dado que $R^2 = 0.9424$, qual o nome deste coeficiente e o que ele indica no contexto desse estudo fictício?

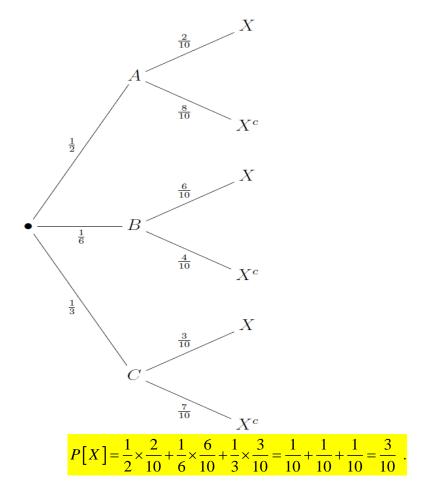
R.: Coeficiente de Determinação. A variação apresentada pela variável número de batimentos por minuto dos pacientes estudados é explicada em 94,24% pela variação apresentada pela variável idade (em anos).

♦

CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR - EDITAL № 04/2016 - PROGRAD

Prova Escrita com Gabarito

- 2. **(1 ponto)** A probabilidade de um indivíduo da classe A comprar um carro é 1/2, já a probabilidade de um indivíduo da classe B comprar um carro é a terça parte da probabilidade do indivíduo da classe A comprar um carro. Sabendo que somente as classes A, B e C estão sendo contempladas neste estudo, pode-se afirmar que as probabilidades de os indivíduos comprarem um carro da marca X são 2/10; 3/5 e 3/10; respectivamente. Pergunta-se:
 - a) (0,5 ponto) Qual a probabilidade de se comprar um carro da marca X?
 Sejam
 - A:" um indivíduo da classe A compra um carro";
 - B:" um indivíduo da classe B compra um carro";
 - C:" um indivíduo da classe C compra um carro";
 - $X\,$:" compra-se um carro da marca $X\,$ "



CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR - EDITAL № 04/2016 - PROGRAD

Prova Escrita com Gabarito

b) **(0,5 ponto)** Qual a probabilidade condicional de que um indivíduo que comprou um carro da marca X seja da classe C?

$$P[C \mid X] = \frac{\frac{1}{3} \times \frac{3}{10}}{\frac{1}{2} \times \frac{2}{10} + \frac{1}{6} \times \frac{6}{10} + \frac{1}{3} \times \frac{3}{10}} = \frac{\frac{1}{10}}{\frac{3}{10}} = \frac{1}{3}$$

♦

CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR – EDITAL Nº 04/2016 – PROGRAD

Prova Escrita com Gabarito

3. **(1,5 pontos)** Duas ilhas *A* e *B*, são completamente diferentes entre si. Enquanto que a ilha *A* está no Oceano Pacífico, a ilha *B* encontra-se no Oceano Atlântico. Suponha que a distribuição das alturas dos habitantes sejam independentes e normalmente distribuídas, sendo que para os habitantes da ilha *A* a altura média é 1,75 m com desvio padrão de 10 cm. Para os habitantes da ilha *B*, temos que a altura média é 1,70 m com desvio padrão de 5 cm.

Uma amostra aleatória de habitantes de uma das ilhas é tomada e, deseja-se testar as seguintes hipóteses:

 H_0 : "Os habitantes são da ilha A"

 H_1 : "Os habitantes são da ilha B"

Procede-se então do seguinte modo:

- (i) seleciona-se uma amostra de 16 moradores adultos de uma ilha, e determina-se a altura média deles;
- (ii) se essa altura média for superior a 173 cm, diremos que são habitantes da ilha A; caso contrário, diremos que são habitantes da ilha B.
- a) (0,5 ponto) Determine o erro tipo I contextualizando sua resposta em termos do problema;
- R.: O erro tipo I neste problema consiste em afirmar que a amostra de valores das alturas dos habitantes é proveniente da ilha B quando na verdade são da ilha A.

Obs.: A resposta: "o erro tipo I consiste em rejeitar H_0 quando H_0 é verdadeira" não será considerada.

b) (0,5 ponto) Determine o erro tipo II contextualizando sua resposta em termos do problema;

R.: O erro tipo II neste problema consiste em afirmar que os habitantes são da ilha A quando na verdade são da ilha B.

A resposta: "o erro tipo II consiste em não rejeitar H_0 quando H_0 é falsa" não será considerada.

c) (0,5 ponto) Determine a probabilidade de se cometer algum erro, isto é, P[erro tipo I] + P[erro tipo II].

Dados:

$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du$				
$\Phi(0,8) = 0,7881$	$\Phi(1,2) = 0.8849$			
$\Phi(1,6) = 0.9452$	$\Phi(2,4) = 0,9918$			

CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR - EDITAL № 04/2016 - PROGRAD

Prova Escrita com Gabarito

As hipóteses são:

$$\begin{cases} H_0: \text{ "Os habitantes são da ilha A"} \\ H_1: \text{ "Os habitantes são da ilha B"} \end{cases} \text{ o que equivale a } \begin{cases} H_0: X \sim N \left(\mu = 175; \sigma^2 = 100\right) \\ H_1: X \sim N \left(\mu = 170; \sigma^2 = 25\right) \end{cases}$$

$$P[\text{erro tipo I}] = P\left[\overline{X} < 173 \middle| X \sim N(175;100)\right] = P\left[\frac{\overline{X} - 175}{\sqrt{\frac{100}{16}}} < \frac{173 - 175}{\sqrt{\frac{100}{16}}}\right] = P\left[Z < -\frac{2}{\frac{10}{4}}\right]$$

$$P\left[Z < -\frac{8}{10}\right] = P\left[Z < -0.8\right] = P\left[Z > 0.8\right] = 1 - P\left[Z \le 0.8\right] = 1 - \Phi\left(0.8\right) = 1 - 0.7881 = 0.2119$$

$$P[\text{erro tipo II}] = P\left[\bar{X} > 173 \middle| X \sim N(170; 25)\right] = P\left[\frac{\bar{X} - 170}{\sqrt{\frac{25}{16}}} > \frac{173 - 170}{\sqrt{\frac{25}{16}}}\right] = P\left[Z > \frac{3}{\frac{5}{4}}\right]$$

$$= P \left[Z > \frac{12}{5} \right] = P \left[Z > 2, 4 \right] = 1 - P \left[Z \le 2, 4 \right] = 1 - \Phi \left(2, 4 \right) = 1 - 0,9918 = 0,0082$$

Assim P[erro tipo I] + P[erro tipo II] = 0,2119 + 0,0082 = 0,2201

CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR − EDITAL № 04/2016 − PROGRAD

Prova Escrita com Gabarito

4. **(1,5 pontos)** Seja X_1, X_2, \dots, X_n uma amostra aleatória de tamanho n da variável aleatória X, a qual tem função densidade de probabilidade $f_X(x) = \lambda e^{-\lambda x} I_{(0,+\infty)}(x)$. Obtenha o estimador de máxima verossimilhança para a mediana dessa variável aleatória.

Solução:

Temos que $X \sim Exp(\lambda)$, assim $F(x) = 1 - e^{-\lambda x}$ e

$$F(\theta) = 0,5 \Longrightarrow 1 - e^{-\lambda \theta} = 0,5 \Longrightarrow e^{-\lambda \theta} = 0,5 \Longrightarrow -\lambda \theta = -\ln 2 \Longrightarrow \theta = \frac{\ln 2}{\lambda}$$

Assim a mediana é $\theta = \frac{\ln 2}{\lambda}$.

Para determinarmos o EMV de θ , primeiramente determinaremos o EMV de λ :

$$L(x_1, x_2, \dots, x_n; \lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda \sum_{i=1}^{n} x_i}$$

$$\ell = \ln(L(x_1, x_2, \dots, x_n; \lambda)) = n \ln \lambda - \lambda \sum_{i=1}^{n} x_i$$

$$\frac{d\ell}{d\lambda} = \frac{d}{d\lambda} \left(n \ln \lambda - \lambda \sum_{i=1}^{n} x_i \right) = \frac{n}{\lambda} - \sum_{i=1}^{n} x_i$$

Igualando a zero temos

$$\frac{n}{\lambda} - \sum_{i=1}^{n} x_i = 0 \Longrightarrow \lambda = \frac{1}{x}.$$

Note que $\frac{dl^2}{d^2\lambda} = \frac{d}{d\lambda} \left(\frac{n}{\lambda} - \sum_{i=1}^n x_i \right) = -\frac{n}{\lambda^2}$, a qual é sempre negativa pois n > 0 e $\lambda > 0$. Assim $\lambda = \frac{1}{x}$

dará o valor máximo da função donde concluímos que o EMV de λ é $\lambda = \frac{1}{\overline{X}}$.

Como $g(\lambda) = \frac{\ln 2}{\lambda}$ é uma função inversível para $\lambda > 0$, pelo princípio da invariância dos estimadores de máxima verossimilhança temos:

CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR - EDITAL Nº 04/2016 - PROGRAD

Prova Escrita com Gabarito

$$\hat{\theta} = \frac{\ln 2}{\lambda} = \frac{\ln 2}{\frac{1}{\overline{x}}} = \overline{x} \ln 2.$$

Assim, $\hat{\theta} = \overline{X} \ln 2$ é o EMV da mediana da variável X.

CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR – EDITAL Nº 04/2016 – PROGRAD

Prova Escrita com Gabarito

5. **(2 pontos)** Seja X_1, X_2, \dots, X_n uma amostra aleatória de tamanho n de uma variável aleatória X a qual é normalmente distribuída com média μ e variância σ^2 , sendo ambos parâmetros desconhecidos. Se desejamos um intervalo de confiança para μ , como σ^2 é desconhecido,

podemos utilizar a quantidade pivotal $\frac{\overline{X} - \mu}{\sqrt{n}}$, em que $S^2 = \frac{1}{n-1} (\sum_{i=1}^n (X_i - \overline{X})^2)$, pivotá-la (se ela for pivotável) e obteremos intervalos de confiança. Procedendo-se dessa maneira, teremos:

$$IC_{\gamma}(\mu) = \left(\overline{X} - q_2 \frac{S}{\sqrt{n}}, \overline{X} - q_1 \frac{S}{\sqrt{n}}\right),$$

sendo q_1 e q_2 quantis da distribuição $t_{(n-1)}$ tais que $\int_{q_1}^{q_2} f_T(t) dt = \gamma$, isto é, γ é a confiança.

Mostre que o intervalo obtido terá tamanho mínimo quando $q_1 = -q_2$.

Solução:

O tamanho do intervalo é dado por

$$L = \bar{X} - q_1 \frac{S}{\sqrt{n}} - \left(\bar{X} - q_2 \frac{S}{\sqrt{n}}\right) = \frac{S}{\sqrt{n}} (q_2 - q_1),$$

Sendo que $\int_{q_1}^{q_2} f_T(t) dt = \gamma$, e $f_T(t)$ a função densidade de probabilidade de uma distribuição t com n-1 graus de liberdade.

Note que a determinação de q_1 implica na determinação de q_2 por causa da relação existente entre eles, desta maneira podemos observar q_2 como função de q_1 , ou seja, $q_2 = q_2(q_1)$.

Derivando $\int_{q_1}^{q_2} f_T(t) dt = \gamma$ em relação a q_1 , temos:

$$\frac{d}{dt} \left(\int_{q_1}^{q_2} f_T(t) dt \right) = \frac{d}{dt} (\gamma) \Rightarrow f_T(q_2) \frac{dq_2}{dq_1} - f_T(q_1) \cdot 1 = 0$$

$$\frac{dq_2}{dq_1} = \frac{f_T(q_1)}{f_T(q_2)}$$

Universidade Federal do Acre Pró-reitora de graduação

CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR - EDITAL № 04/2016 - PROGRAD

Prova Escrita com Gabarito

Derivando
$$L = \frac{S}{\sqrt{n}} (q_2 - q_1)$$
 em relação a q_1 , temos:

$$\frac{dL}{dq_1} = \frac{d}{dq_1} \left(\frac{S}{\sqrt{n}} (q_2 - q_1) \right) = \frac{S}{\sqrt{n}} \left(\frac{dq_2}{dq_1} - 1 \right)$$

Igualando a zero temos

$$\frac{S}{\sqrt{n}} \left(\frac{dq_2}{dq_1} - 1 \right) = 0 \Rightarrow \frac{S}{\sqrt{n}} \left(\frac{f_T(q_1)}{f_T(q_2)} - 1 \right) = 0 \Rightarrow \frac{f_T(q_1)}{f_T(q_2)} - 1 = 0 \Rightarrow f_T(q_1) = f_T(q_2)$$

Como $f_T(t)$ é uma distribuição $t_{(n-1)}$, a qual é simétrica, para que $f_T(q_1) = f_T(q_2)$, devemos ter $q_1 = q_2$ ou $q_1 = -q_2$. A primeira condição não satisfaz a restrição $\int_{q_1}^{q_2} f_T(t) dt = \gamma$ e assim a única solução é $q_1 = -q_2$, como queríamos demonstrar.

Universidade Federal do Acre Pró-reitora de graduação

CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR − EDITAL № 04/2016 − PROGRAD

Prova Escrita com Gabarito

6. **(1 ponto)** Um determinado fabricante de televisor garante que a durabilidade de seus equipamentos tenha distribuição de probabilidades exponencial, $f(x) = \lambda e^{-\lambda x}$, para todo $x \ge 0$, com $\lambda = \frac{1}{800}$.

(Dados: $e^{\frac{1}{800}} \cong 0.02$). Desse modo, responda:

a) (0,2 ponto) Qual o tempo médio de vida das TV's em horas?

Resolução:

$$E[X] = \frac{1}{\lambda} = 800 \implies \lambda = \frac{1}{800}$$

b) (0,4 ponto) Determine a função de distribuição acumulada?

Resolução:

Temos que
$$f(x) = \lambda e^{-\lambda x}$$
 e $F(x) = \int_0^x \lambda e^{-\lambda u} du$

Fazendo:
$$t = -\lambda u \Rightarrow dt = -\lambda du \Rightarrow du = -\frac{1}{\lambda} dt$$

$$u = 0 \Rightarrow t = 0$$
$$u = x \Rightarrow t = -\lambda x$$

$$F(x) = \int_0^x \lambda e^{-\lambda u} du = \int_0^{-\lambda x} \lambda e^t \left(-\frac{1}{\lambda}\right) dt = -e^t \Big|_{t=0}^{-\lambda x} = 1 - e^{-\lambda x}.$$

c) **(0,4 ponto)** Sabendo-se que a garantia do equipamento é de 1288 horas e que foram vendidos 8 televisores, qual a probabilidade de o fabricante ter que substituir pelo menos uma TV?

$$P[X \le 1288] = 1 - e^{\frac{-1288}{800}} = 1 - 0.2 = 0.8$$

Logo, a probabilidade de sucesso, isto é, de o fabricante não substituir uma TV é de p = 0.8.

Seja $\,Y\,$ o número de Tvs que não satisfazem a garantia em 8 televisores vendidos. Temos que

$$Y \sim Bin(8;0,2)$$
, assim

$$P[Y \ge 1] = 1 - P[Y = 0]$$

CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR − EDITAL № 04/2016 − PROGRAD

Prova Escrita com Gabarito

$$P[Y=0] = {1 \choose 0} 0, 2^{0} (1-0,2)^{8-0} = 0, 2^{8} = \left(\frac{2}{10}\right)^{8} = \frac{256}{1000000000} = 0,000000256$$

Portanto:

$$P[Y \ge 1] = 1 - P[Y = 0] = 1 - 0,00000256 = 0,99999744$$

CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR − EDITAL № 04/2016 − PROGRAD

Prova Escrita com Gabarito

- 7. **(1 ponto)** Um empresa pretende instalar um experimento a fim avaliar o efeito de doses crescentes de adubação (10, 30, 50, 70 e 90) no desenvolvimento de plantas de uma espécie comercial. Para isso, ele possui material experimental suficiente para utilizar quatro repetições. E, sabe-se que o ambiente experimental possui ligeiro gradiente de heterogeneidade o que sugere a necessidade de se usar algum controle local. Pede-se:
 - a) (0,2 ponto) Qual o delineamento experimental adequado para ser utilizado? Justifique.
 R.: Delineamento em blocos casualizados, pois a área experimental possui gradientes de heterogeneidade.
 (Não deve utilizar o delineamento inteiramente casualizado)
 - b) **(0,2 ponto)** Quantos tratamentos existem no experimento? R.: Cinco tratamentos, as doses **(10, 30, 50, 70 e 90)**.
 - c) (0,2 ponto) Quantas parcelas irão existir no experimento?
 R.: 20 parcelas, formadas por cinco tratamentos e cada um repetido quatro vezes.
 - d) **(0,2 ponto)** É necessário fazer a casualização dos tratamentos nas parcelas? Justifique.

 R.: A casualização deve ser feita sempre, é um dos princípios básicos da experimentação, o qual deve estar presente em todos os experimentos.
 - e) **(0,2 ponto)** Elabore o esquema de análise da variância somente com fontes de variação e números de graus de liberdade.

R.:

Fonte de variação	Graus de liberdade
Blocos	<mark>3</mark>
<mark>Tratamentos</mark>	<mark>4</mark>
<mark>Erro</mark>	<mark>12</mark>
<mark>Total</mark>	<mark>19</mark>

CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR − EDITAL № 04/2016 − PROGRAD

Prova Escrita com Gabarito

8. **(1 ponto)** Considere a variável aleatória discreta bidimensional (X,Y), com a seguinte distribuição de probabilidades,

V	Υ				
^	0	1	2		
1	3/20	3/20	2/20		
2	3/20 1/20 4/20	1/20 1/20	2/20 2/20 3/20		
3	4/20	1/20	3/20		

a) (0,5 ponto) Determine a covariância entre as variáveis X e Y;

Temos que

remos que				
x x		<mark>2</mark>	<mark>3</mark>	<mark>Total</mark>
P[X=x]	8/20	4/20	8/20	<mark>1</mark>
е				
y	0	<mark>1</mark>	<mark>2</mark>	<mark>Total</mark>
P[Y=y]	8/20	5/20	<mark>7/</mark> 20	1

Assim

$$E[X] = 1 \times \frac{8}{20} + 2 \times \frac{4}{20} + 3 \times \frac{8}{20} = \frac{40}{20} = 2$$
$$E[Y] = 0 \times \frac{8}{20} + 1 \times \frac{5}{20} + 2 \times \frac{7}{20} = \frac{19}{20}$$

$$E[XY] = 1 \times 0 \times \frac{3}{20} + 1 \times 1 \times \frac{3}{20} + 1 \times 2 \times \frac{2}{20} + 2 \times 0 \times \frac{1}{20} + 2 \times 1 \times \frac{1}{20} + 2 \times 2 \times \frac{2}{20} + 2 \times 1 \times \frac{1}{20} + 2 \times 2 \times \frac{2}{20} + 2 \times 1 \times \frac{1}{20} + 2 \times 2 \times \frac{2}{20} + 2 \times 1 \times \frac{1}{20} + 2 \times 1 \times \frac{1}{20} + 2 \times 2 \times \frac{2}{20} + 2 \times 1 \times \frac{1}{20} + 2 \times 1 \times \frac{1}{20} + 2 \times 1 \times \frac{2}{20} + 2 \times 1 \times \frac{1}{20} + 2 \times 1 \times \frac{2}{20} + 2 \times 1 \times \frac{1}{20} + 2 \times 1 \times \frac{2}{20} + 2 \times 1 \times \frac{2}{20} + 2 \times 1 \times \frac{1}{20} + 2 \times 1 \times \frac{2}{20} + 2 \times$$

$$Cov[X,Y] = E[XY] - E[X]E[Y] = \frac{38}{20} - 2 \times \frac{19}{20} = 0$$

b) (0,5 ponto) X e Y são variáveis aleatórias independentes? Justifique.

Não. Note que
$$P[X=1,Y=0] = \frac{3}{20} \neq \frac{4}{25} = \frac{8}{20} \times \frac{8}{20} = P[X=1] \times P[Y=0]$$
.

(o cálculo pode ser efetuado com qualquer um dos valores da tabela em que $P[X=x,Y=y] \neq P[X=x] \times P[Y=y]$) e ainda a dependência pode ser verificada por outro princípio, como é o caso da desigualdade entre qualquer distribuição condicional e marginal. \spadesuit